Diode Circuits
$\table Parameter,HWR,FWR,Bridge-rectifier;\text"Avg. load current "(I_{Ldc}),I_m/π, {2I_m}/{π},{2I_m}/{π};\text"Maximum avg. load voltage" (V_{Ldc}), V_m/π, {2V_{m}}/{π},{2V_{m}}/{π};\text"RMS load current"(I_Lrms), I_m/2,I_m/√2 , I_m/√2; \text"RMS load voltage" (V_{Lrm}), V_m/2, V_m/√2,V_m/√2;\text"DC load power" P_{dc}, {I^2_{m}}/{π^2} R_L,{4I^2_{m} R_L}/{π^2},{4I^2_{m} R_L}/{π^2};\text"Max. rectification efficiency (η)",40%,81.2%,81.2%;TUF,28.7%,69.3%,81.2%;\text"Ripple factor",121%,48%,48%;\text"Ripple Effect",50 Hz, 100 Hz, 100 Hz;\text"Number of diodes used", One, Two, Four;\text"Center tap transformer",\text"Not req.",\text"Very much req.",\text"Not req.";\text"Transformer core saturation",Possible,Not-possible,Not-possible;PIV,V_m,2V_m,V_m;\text"Expression for peak load current",I_m={V_m}/{R_S + R_F + R_L},I_m={V_m}/{R_S + R_F + R_L},I_m={V_m}/{R_S + R_F + R_L}$
Ripple Factor, $RF = {V_{RMS}}/{V_{Ldc}} = {1}/{4√3 fCR }$ …For full wave or bridge rectifier circuit
RF for HWR = $1/{2√3 fCR}$
Load current, $I_L = V_z/R_L$
$I_z$ -> zener current $I_{z(max)} = P_z/V_z$
$R_{s(min)} = {V_{in(max)} – V_z}/{I_L + I_{z(max)}}$
$R_{s(max)} = {V_{in(min)} – V_z}/{I_L + I_{z(min)}}$